

CHEKVOLT® HIGH IMPEDANCE TECHNICAL NOTE

This document and all calculated values shown also apply to the R-3MT-1K Safe-Test Point[™], with the exception of LEDs as the Safe-Test Point[™] does not have LED Indication.

ChekVolt[™] is designed to enhance safety and productivity within facilities' Lockout/Tagout (LOTO) programs by providing both voltage presence indication and absence of voltage testing capabilities. This high-impedance device allows for safe voltage measurement from outside the panel when a qualified person is using an adequately rated portable test instrument.

When using the **ChekVolt**[™] to measure voltage, such as in a 480VAC system from Phase L1 to Phase L2, readings from a 10MΩ multimeter will show a slight reduction, indicating a 3% reduction reading of approximately 465V. This device enhances compliance to NFPA 70E & CSA Z462. Always follow the "live-dead-live" test procedure as mandated by OSHA, NFPA 70E (2024), Article 110.4(A)(5), 120.1, Annex G, and CSA Z462. See below for a sample procedure.

SAMPLE PROCEDURE

- 1) Verify the test instrument is calibrated and properly rated for application.
- 2) Verify the test instrument to a known voltage source.
- 3) Verify there is voltage illumination on the voltage indicator.
- 4) Open the dust cap and insert the test instrument probes into the test point and measure the voltage between phase to phase and phase to ground to verify voltage presence.
- 5) Open Isolator.
- 6) Verify there is no LED illumination on the voltage indicator.

- Re-insert the Test Instrument probes into the test point and measure the voltage between phase to phase and phase to ground to verify voltage absence.
- 8) Re-verify test Instrument to a known voltage source.
- Upon completion of work, close the dust cap on the test point, close isolator, and verify proper operation of voltage indicator.

Note: The voltage accuracy of the ChekVolt[®] is -3% and the test instrument will read small mV due to the high impedance circuit in the test points.

HOW TO CALCULATE EXPECTED READING OF VOLTAGE MEASUREMENTS WITH YOUR MULTIMETER

- Step 1 Obtain multimeter impendence, can be typically found in manufactures manual listed under Specifications Input Impendence (Grace Technologies recommends using CAT III/IV 10MΩ multimeter)
- Step 2 Resistance Calculation (Meter R / Sum R)
- Step 3 Calculate Reduction Voltage (Resistance Calculation * Voltage of system).
 - a) Phase to Phase
 - b) Phase to Ground

© Grace Technologies, Inc. All rights reserved. Specifications are subject to change with/without notice.

(See examples on back)

SS-STP-TN1-EN 2404

1515 East Kimberly Road • Davenport, IA • www.graceport.com • 1.800.280.9517

CALCULATIONS

Calculated Voltage = (Meter R / Sum R) x V

Where,

Meter R = Multimeter Impedance Sum R = Internal resistance of ChekVolt[®] + Meter R

V = System Voltage

Example 1: (refer to Figure 1a & 1b)

Using a 10MΩ Multimeter; Measuring Voltage Phase L1 to Phase L3 and Phase to Ground on a 480Y/277V System

Example 1 Calculations:

Example 1 Results:

480Y/277V system measured using ChekVolt[®] and 10MΩ multimeter will have a 3% reduction voltage reading. Phase to Phase voltage reading will be approximately 465.7V, and Phase to Ground voltage reading will be approximately 268.7V

Example 2: (refer to Figure 2a & 2b)

Using a 1MΩ Multimeter; Measuring Voltage Phase L1 to Phase L3 and Phase to Ground on a 480/240V Delta System

Example 2 Calculations:

Example 2 Results:

480/240V Delta System measured using ChekVolt[®] and 1MΩ multimeter will have a 24% reduction voltage reading. Phase to Phase voltage reading will be approximately 361.4V, and Phase to Ground voltage reading will be approximately 180.7V

ChekVolt[®] & R-3MT-1K (164kΩ Internal Impedance)

Power Systems	10MΩ Multimeter		1MΩ Multimeter		500kΩ Multimeter	
	3% Voltage Reduction		24% Voltage Reduction		39% Voltage Reduction	
	Phase to Phase	Phase to Ground	Phase to Phase	Phase to Ground	Phase to Phase	Phase to Ground
208Y/120V Wye	201	116	157	90	126	72
480Y/277V Wye	465	268	361	209	290	167
600Y/347V Wye	581	336	452	261	362	210
240V/120V Delta	232	116	181	90	145	72
480V/240V Delta	465	232	361	181	290	145
240V/120V Single Phase	232	116	181	90	145	72
220V Single Phase (Phase to GND)	N/A	213	N/A	166	N/A	133